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Interaction between sine-Gordon breathers
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~Received 7 April 2001; published 25 July 2001!

Using the exact breather lattice solution of the sine-Gordon equation, we obtain the asymptotic interaction
between two breathers. We identify the exponential dependence of the interaction on the breather separation as
well as its power-law dependence on the breather frequency. Numerical simulation of the breather lattice
demonstrates its instability. However, stabilization of such structures is found to be feasible through ac driving
and damping. Finally, other limits of the original periodic solution are traced, obtaining the leading-order terms
in the interaction between ‘‘pseudosphere’’ solutions and kink-antikink pairs.
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The 111 dimensional sine-Gordon equation (uxx2utt

5sinu) appears in a wide variety of physical systems,
cluding charge-density-wave materials, magnetic flux in
sephson lines, splay waves in membranes, Bloch-wall
tion in magnetic crystals, and models of elementary partic
among others@1#. In the context of differential geometry, it
solutions correspond to surfaces of constant negative cu
ture @2#. As part of the Ablowitz-Kaup-Newell-Segur hiera
chy of integrable partial differential equations@3#, this equa-
tion has an exact single soliton solution, a soliton-antisoli
solution, and a breather solution. In addition, it also has ex
spatially periodic solutions such as a soliton lattice an
breather lattice@2#. A breather is a spatially localized, tim
periodic nonlinear mode. Breathers can directly affect el
tronic, optical, and transport properties of a material@4–6#.
Specifically, they can enhance optical nonlinearities in po
enes and related low-dimensional electronic materials@4,5#.
Therefore, in addition to its fundamental significance in no
linear systems, it is important to understand the interac
between breathers.

There are several methods of obtaining the~asymptotic!
interaction between solitons@7#. One of them is to use the
soliton lattice~i.e., periodic wave train! solution and calcu-
late its energy in the ‘‘dilute’’ limit@8#, i.e., when the modu-
lus of the elliptic function is close to unity. In this paper, o
objective is to calculate the breather interaction analytica
using the exact breather lattice solution. In particular,
study the dependence of the interaction as a function
breather temporal period~or frequency! and spatial period.
We then determine the stability of the configurations us
the exactbreather lattice and introducing perturbations on
through the discretization of the spatial domain. In this w
we find the configuration to be unstable. However, we
able to stabilize it in the more realistic setting~for physical
applications! of damping and ac driving. The sine-Gordo
breather interactions have been experimentally studied
cently using inelastic neutron scattering@9#. Interactions be-
tween two breathers have also been analyzed in the con
of the nonlinear coupled Klein-Gordon equations@10# and
numerically studied for a coupled electron-vibron lattice s
tem @6#. Our results may therefore be expected to be relev
also for other systems with soft nonlinearities, as well as
their envelope wave equations such as the nonlinear Sc¨-
dinger~NLS! equation. In the latter case, in fact, it is know
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that the interaction between such coherent structures de
exponentially with increasing separation and is attractive
‘‘pulses’’ of the same parity, while repulsive for ones of o
posite parity~see, e.g.,@11# and references therein!.

The periodic breather lattice solution of the sine-Gord
~SG! equation is given by@2#

u~x,t !54 tan21@asn~bt,k2!dn~cx,12m2!#, ~1!

where sn(x,k), cn(x,k) ~below!, and dn(x,m) are the Ja-
cobi elliptic functions with modulusk or m. A breather lattice
solution for specific values ofk,m is depicted in Fig. 1. Note
that with respect to the notation of Ref.@2#, we usex2y
→t, x1y→x ~in agreement with the standard notation f
the SG equation!. Here,

a5Ak

m
, b5A m

~m1k!~11mk!
,

c5A k

~m1k!~11mk!
. ~2!

For the SG equation, the energy is given by

FIG. 1. Pictorial representation of the exact sine-Gord
breather lattice solution. Shown is a fraction of the fieldu(x,t)
containing exactly four breathers and demonstrating their propa
tion for a time interval equal to three times the period of ea
breather.
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E5E Eddx5E Fux
21ut

2

2
1~12cosu!Gdx. ~3!

Substitution of Eq.~1! into Eq. ~3! gives the spatial energy density

Ed5
8km2cn2~bt,k2!dn2~cx,12m2!dn2~bt,k2!14k2~12m2!2cn2~cx,12m2!sn2~cx,12m2!sn2~bt,k2!

~c1m!~11km!@m1kdn2~cx,12m2!sn2~bt,k2!#2
1

~8k/m!dn2~cx,12m2!sn2~bt,k2!

@11~k/m!dn2~cx,12m2!sn2~bt,k2!#2
. ~4!
Since the result of integration of Eq.~3! ~over x) will be
independent oft, we evaluate the expression~4! at t50 first
and then integrate. To be mathematically preciseE5E(t
50)5 limt→0E5 limt→0*Eddx5*dx limt→0Ed . Then

Ed~ t50!5
16kdn2~cx,12m2!

~k1m!~11km!
. ~5!
02661
We now integrate Eq.~5! up to the spatial period 2K(1
2m2)/c to obtain

E5E
0

2K(12m2)/c
Eddx516A k

~k1m!~11km!
E~12m2!,

~6!
u-
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FIG. 2. The interaction energyV, defined in
the text, is given for the breather lattice config
ration as a function of the breather frequencyv
and the breather separationL in the 3D plot of the
top panel. Instead ofv, 10v has been used fo
clarity. Two-dimensional sections of the top pan
are shown in the two pairs of the bottom pane
The first two show, in linear and log-linear plots
the dependence ofV on L for fixed v, while the
second pair demonstrates the dependence ofV on
v for fixed L in linear and log-log plots~also see
text!.
3-2



in
Th

n

in

ce
as
tion

nc-

e,
he

log
ence

-

ted,
ts

the
num-
lses
t
ave
u-
er

ed
od-
he
b-

h a
er
e

e that

ble
e
e.
ob-

u-
LS

ase

of

ow
ing

in-
uet
n-

y i
r
s

, a

fig

INTERACTION BETWEEN SINE-GORDON . . . PHYSICAL REVIEW E64 026613
where K(12m2) and E(12m2) are the complete elliptic
integrals of the first and second kind, respectively.

Equation~6! is an important result used below to obta
the asymptotic interaction between the two breathers.
breather lattice solution of Eq.~1! is depicted numerically in
Fig. 1 for a typical set of parameters (k,m). To calculate the
breather-breather interaction, we take the limitm,k→0, with
k/m5(12v2)/v2, wherev is the breather frequency. The
Eq. ~6! becomes

E5F16A12v228m2
~12v2!3/2

v2
16m4

~12v2!5/2

v4 G
3E~12m2!. ~7!

FIG. 3. A space time contour plot of the spatial energy densit
shown for two different cases~corresponding to different breathe
separations! for both of whichv250.5. The top panel correspond
to (k,m)5(0.08,0.08), while the bottom to (k,m)5(0.02,0.02). In
the latter case, the distance between the breathers is larger
hence, it takes longer for the perturbation due to discreteness~of the
originally symmetric and periodic configuration! to cause the
breather interaction to destroy the unstable breather lattice con
ration.
02661
e

Despite the competing second- and fourth-order terms
Eq. ~7!, it can easily be seen that the interaction isattractive.
Note that this is in agreement with our expectations, sin
soft nonlinearities should give the same type of interaction
NLS, where as noted above, the same parity pulse interac
is attractive@11#.

Next, we elucidate the nature of the interaction as a fu
tion of the separationL52K(12m2)/c between the pulses
of the lattice, as well as of the frequencyv. However, from
the above definition ofL, we can expressm5m(L) and sub-
stitute into Eq.~7!, to express the interaction termV5E
2ESB ~where ESB516A12v2, is the energy of a single
breather!, as a function of (L,v). In Fig. 2, we show a plot
of V5V(L,v) as a function of its arguments. Furthermor
two-dimensional ‘‘sections’’ have been used for showing t
dependence ofV5V(L,v5fixed) andV5V(L5fixed,v).
From the latter graphs also plotted in semilog and log-
scales, respectively, we clearly conclude that the depend
on L is exponential, while the one onv follows a power law.
The deviation of the latter from a ‘‘pure’’ power-law depen
dence close tov51 is because then the 12v2 term is non-
negligible and, hence, the dependence is more complica
but still explicitly tractable through the analytical resul
given above.

In the case of NLS and its discrete version~DNLS!, it can
be shown that configurations containing structures of
same parity have as many unstable eigenvalues as the
ber of times the relative phase between neighboring pu
remains unchanged@11,12#. Hence, it is expected tha
breather lattice configurations should be unstable. We h
verified this conjecture by means of direct numerical sim
lations. In the simulation of the problem, an eighth-ord
Runge-Kutta scheme was implemented@13#. Periodic bound-
ary conditions were used and the initial condition contain
an exact breather lattice configuration, matching the peri
icity of the finite domain. Hence, the only perturbation to t
problem came from the numerical discretization of the pro
lem. We thus find, as can be seen in Fig. 3, that suc
perturbation will grow and eventually destroy the breath
lattice configuration. Similar results were found for all of th
studied cases and parameter changes. We, thus, conclud
the breather lattice is unstable.

It should be noted that, as per the nature of the availa
exactsolution of Eq.~1!, only breathers oscillating in phas
~and, thus, attracting each other! have been considered her
We are not aware of exact solutions of the continuum pr
lem in which the breathers oscillate out of phase~and, thus,
repel each other!. In the discrete setting, however, one nat
rally expects such solutions to arise, as they do for the DN
@11#. In the discrete case, it is expected that out-of-ph
breather configurationscanbe linearly stable~for sufficiently
discrete lattices!, as they have been found to be in the case
DNLS in @11,14#.

Another important question that naturally arises is h
the picture presented here will be modified in approach
the anticontinuum limit ~of lattices with lattice spacing
→`). In that case, the presence of the instability for
phase pulse oscillations will not be affected, as the Floq
multipliers corresponding to the so-called ‘‘interaction eige
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FIG. 4. The ac-driven and damped case: once again, space-time contour plots of the energy density are given. Panels~a! and~b! are both
for F050.225. In the top left panel, the initial condition contains 7 breathers in the lattice, while in the second one it contains 14. P~c!
of the stabilized locked breather lattice occurs forF050.425, while the intermittent pattern of panel~d! occurs forF050.310~also see text!.
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values’’ of @11#, will always be present and will be unstabl
However, their specific value will depend on the lattice sp
ing. Hence, if the lattice spacing increases and so does
associated pulse separation, the instability will beco
weaker~i.e., the growth rate will decrease! and the time nec-
essary for it to manifest itself, which is inversely propo
tional to the growth rate, will increase. In the case of discr
breathers oscillating out of phase, configurations close to
anticontinuum limit are expected to be linearly stable,
mentioned above. Nevertheless, as the continuum limi
approached, more ‘‘exotic’’ routes to instability, such as t
Hamiltonian Hopf bifurcations@15# observed in the corre
sponding DNLS configurations~see, e.g.,@16#!, can be ex-
pected.

However, the question arises, whether stabilization of
breather lattice can be achieved in driven and damped s
tions studied previously in the dc case@17#, and also for ac
driving and small domains in@18#. The SG equation then
becomes

utt5uxx2sinu1F0 sin~vt !2aut , ~8!
02661
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where a, the dissipation coefficient was fixed to 0.1~the
results were also checked to be representative for diffe
values ofa) and F0 was varied.v was chosen to be the
frequency of the breather lattice. The scenarios obser
were, basically, similar to the ones reported in@18#. For
smallF0 (F0,0.198), the lattice smoothed out to a unifor
spatial state~similar to the one observed in the top left pan
of Fig. 4, but for a slightly higher value ofF050.225) and
the response became identical to the periodic motion of
single pendulum~see@18#, and references therein!. For large
F0 (F0.0.427), the response became highly irregular le
ing to chaotic dynamics. In the intermediate regime, ho
ever, suppression of chaotic behavior was observed by
generation and localization or intermittent behavior of pul
like coherent structures. We do not attempt to give param
regimes for the individual types of intermediate behav
since, as the first two~left-most! panels of Fig. 4 indicate, the
corresponding parameter windows were relatively sensi
to initial conditions~i.e., these two panels show that the b
havior was different for the same parameter values but
3-4
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ferent number of breathers in the initial condition!. Instead,
we summarize the main features of this regime:

~1! Regimes of locking to a breather lattice@such as
0.421,F0,0.427; see panel~c! of Fig. 4#; it was also tested
that such localization occurred independently of the num
of breathers in the initial condition;

~2! Regimes of strongly intermittent behavior@see the
panel~d! of Fig. 4# where the re-emergence of coherent e
citations suppressed the appearance of chaos;

~3! Regimes of coexistence between the above situat
~i.e., where a few breathers were strongly localized conti
ously while others were occasionally being regenerated!, as
well as parameter windows of uniform behavior and chao
behavior. An important result, however, of these investi
tions is that it is possible to lock the configuration eithe
completely, or even partially (with respect to the initial co
dition), depending on the parameter values, into a breat
lattice state, through driving and damping.

Finally, we investigated two different limits of Eq.~1!,
suggested in@2#. For k,m→1 the limit gives the ‘‘pseudo-
sphere’’ solutionu54 tan21(tanht/2), which resembles a
p-kink, but in time rather than space@2#. The energy in this
limit is

E54p2
p

2
~k21!21

p

4
~m21!21

3p

32
~m21!2~k21!2.

~9!
s,
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,
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Note that 4p is the energy of a single pseudosphere, wh
the remaining terms yield the interaction energyV
5V(k,m). On the other hand, thek→finite, m→0 limit
gives the kink-antikink pair solution 4 tan21(t sechx). The
energy in this case is given by

E5F1628S k1
1

kD12m2S 213k21
3

k2D GE~12m2!.

~10!

Once again, as expected from the physical intuition of
problem, the interaction is attractive in this limit.

In conclusion, using the exact breather lattice solution
the sine-Gordon equation we~i! obtained an attractive inter
action between two breathers as a function of breather s
ration and frequency in the asymptotic limit,~ii ! recovered
the interaction energy between two pseudosphere solut
and a kink-antikink pair in the appropriate limits,~iii ! nu-
merically found the lattice solution to be unstable, and~iv!
numerically demonstrated stabilization of the lattice throu
ac driving with damping. Our results should also be relev
for NLS and other breather-bearing nonlinear equations.
extension of our analysis and numerical results for the
11 dimensional sine-Gordon equation would be highly d
sirable.
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