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Interaction between sine-Gordon breathers
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Using the exact breather lattice solution of the sine-Gordon equation, we obtain the asymptotic interaction
between two breathers. We identify the exponential dependence of the interaction on the breather separation as
well as its power-law dependence on the breather frequency. Numerical simulation of the breather lattice
demonstrates its instability. However, stabilization of such structures is found to be feasible through ac driving
and damping. Finally, other limits of the original periodic solution are traced, obtaining the leading-order terms
in the interaction between “pseudosphere” solutions and kink-antikink pairs.
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The 1+1 dimensional sine-Gordon equatiom,{—Uu,;  that the interaction between such coherent structures decays
=sinu) appears in a wide variety of physical systems, in-exponentially with increasing separation and is attractive for
cluding charge-density-wave materials, magnetic flux in Jo~pulses” of the same parity, while repulsive for ones of op-
sephson lines, splay waves in membranes, Bloch-wall moPosite parity(see, e.g.[11] and references thergin
tion in magnetic crystals, and models of elementary particles, The periodic breather lattice solution of the sine-Gordon
among other§1]. In the context of differential geometry, its (SG equation is given by2]
solutions correspond to surfaces of constant negative curva- _
ture[2]. As part 2f the Ablowitz—Kaup-NeweII—Segur hierar- u(x,t)=4tan ‘fasnbt,k?)dn(cx1-m?)], @
chy of integrable partial differential equatiofs], this equa-  where snk,k), cn(x,k) (below), and dng,m) are the Ja-
tion has an exact single soliton solution, a soliton-antisolitorcopj elliptic functions with moduluk& or m. A breather lattice
Solution, and a breather Solution. In addition, it aISO haS eXa(goh‘ltion for Speciﬁc values df,m is depicted in F|g 1. Note
spatially periodic solutions such as a soliton lattice and gnhat with respect to the notation of RéR], we usex—y

breather latticg2]. A breather is a spatially localized, time _,{ x+y .x (in agreement with the standard notation for
periodic nonlinear mode. Breathers can directly affect elecihe SG equation Here,

tronic, optical, and transport properties of a mateldat 6.

Specifically, they can enhance optical nonlinearities in poly- k m

enes and related low-dimensional electronic mate(i&/s]. =N b= (M+Kk)(1+mk)’

Therefore, in addition to its fundamental significance in non-

linear systems, it is important to understand the interaction / Kk

between breathers. c= m (2

There are several methods of obtaining tasymptoti¢
interaction between solitorl§’]. One of them is to use the For the SG equation, the energy is given by
soliton lattice(i.e., periodic wave trainsolution and calcu-
late its energy in the “dilute” limit[8], i.e., when the modu-
lus of the elliptic function is close to unity. In this paper, our
objective is to calculate the breather interaction analytically, -
using the exact breather lattice solution. In particular, we
study the dependence of the interaction as a function of -
breather temporal periotbr frequency and spatial period. 1
We then determine the stability of the configurations using % o
the exactbreather lattice and introducing perturbations only = -
through the discretization of the spatial domain. In this way -2
we find the configuration to be unstable. However, we are
able to stabilize it in the more realistic settiffgr physical
application$ of damping and ac driving. The sine-Gordon
breather interactions have been experimentally studied re-
cently using inelastic neutron scatterif®j. Interactions be-
tween two breathers have also been analyzed in the contex
of the nonlinear coupled Klein-Gordon equatidri®] and
numerically studied for a coupled electron-vibron lattice sys- FiG. 1. Pictorial representation of the exact sine-Gordon
tem[6]. Our results may therefore be expected to be relevangreather lattice solution. Shown is a fraction of the fielgk,t)
also for other systems with soft nonlinearities, as well as folcontaining exactly four breathers and demonstrating their propaga-
their envelope wave equations such as the nonlinear Schréon for a time interval equal to three times the period of each
dinger(NLS) equation. In the latter case, in fact, it is known breather.
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2 2

Ezf Eddx=f [szut +(1—cosu) |dx. 3

Substitution of Eq(1) into Eq. (3) gives the spatial energy density

£ 8knPer?(bt,k?)dr?(cx,1— m?)dré(bt,k?) + 4k?(1—m?)2cré(cx,1— m?)sre(cx,1— m?)sri(bt, k?) . (8k/m)dr?(cx,1—m?)sri(bt,k?) @
o (c+m)(1+km)[m+kdr?(cx,1—m?)sri(bt,k?)]? [1+ (k/m)dr?(cx,1— m?)sri(bt,k?)]2

Since the result of integration of E(B) (overx) will be ~ We now integrate Eq(5) up to the spatial period K(1
independent of, we evaluate the expressiof) att=0 first ~ —m?)/c to obtain
and then integrate. To be mathematically predse E(t
=0)=lim,_,oE=Ilim,_ofEqdx= fdxlim,_,E4. Then

E_fZK(l—mZ)/cE dx=16 k E(1—m?
16kdr?(cx,1—m?) ~ o o= G my (e kmy o L™

(k+m)(1+km) ° ®) (6)

Eq(t=0)=

FIG. 2. The interaction energy, defined in
the text, is given for the breather lattice configu-
ration as a function of the breather frequency
and the breather separatibrin the 3D plot of the
) Y top panel. Instead ob, 10w has been used for
g, - clarity. Two-dimensional sections of the top panel

. \ g are shown in the two pairs of the bottom panels.
b Y pd The first two show, in linear and log-linear plots,
& ™ l g the dependence d&f on L for fixed o, while the
second pair demonstrates the dependenaémf
w for fixed L in linear and log-log plotgalso see
v ln[V] L text).

0.8 2
K
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Despite the competing second- and fourth-order terms in
Eq. (7), it can easily be seen that the interactiomtisactive
Note that this is in agreement with our expectations, since
soft nonlinearities should give the same type of interaction as
NLS, where as noted above, the same parity pulse interaction
is attractive[11].
Next, we elucidate the nature of the interaction as a func-
tion of the separatioh =2K(1—m?)/c between the pulses
of the lattice, as well as of the frequenay However, from
the above definition off, we can expressi=m(L) and sub-
stitute into Eq.(7), to express the interaction terivi=E
—Egg (Where Egg=16\1—w?, is the energy of a single
breathe), as a function of I{,w). In Fig. 2, we show a plot
of V=V(L,w) as a function of its arguments. Furthermore,
two-dimensional “sections” have been used for showing the
dependence o¥/=V(L,w=fixed) andV=V(L=fixed,w).
From the latter graphs also plotted in semilog and log-log
scales, respectively, we clearly conclude that the dependence
onL is exponential, while the one an follows a power law.
The deviation of the latter from a “pure” power-law depen-
dence close ta=1 is because then the-1w? term is non-
negligible and, hence, the dependence is more complicated,
but still explicitly tractable through the analytical results
given above.
In the case of NLS and its discrete versi@NLS), it can
be shown that configurations containing structures of the
same parity have as many unstable eigenvalues as the num-
ber of times the relative phase between neighboring pulses
remains unchanged11,12. Hence, it is expected that
breather lattice configurations should be unstable. We have
verified this conjecture by means of direct numerical simu-
lations. In the simulation of the problem, an eighth-order
(py ¢ 0 o eoo om e ieen e Teno 2000 Runge-Kutta scheme was implement&8a]. Periodic bound-
ary conditions were used and the initial condition contained
FIG. 3. A space time contour plot of the spatial energy density isan exact breather lattice configuration, matching the period-
shown for two different case@orresponding to different breather icity of the finite domain. Hence, the only perturbation to the
separationsfor both of whichw?=0.5. The top panel corresponds problem came from the numerical discretization of the prob-
to (k,m)=(0.08,0.08), while the bottom tdk(m)=(0.02,0.02). In  lem. We thus find, as can be seen in Fig. 3, that such a
the latter case, the distance between the breathers is larger, apérturbation will grow and eventually destroy the breather
hence, it takes longer for the perturbation due to discreteloésise  |attice configuration. Similar results were found for all of the
originally symmetric and periodic configuratiprio cause the studied cases and parameter changes. We, thus, conclude that
breather interaction to destroy the unstable breather lattice configyne preather lattice is unstable.
ration. It should be noted that, as per the nature of the available
exactsolution of Eq.(1), only breathers oscillating in phase
where K(1—m?) and E(1—m?) are the complete elliptic (and, thus, attracting each othérave been considered here.
integrals of the first and second kind, respectively. We are not aware of exact solutions of the continuum prob-
Equation(6) is an important result used below to obtain lem in which the breathers oscillate out of ph#aad, thus,
the asymptotic interaction between the two breathers. Theepel each otherin the discrete setting, however, one natu-
breather lattice solution of Eql) is depicted numerically in rally expects such solutions to arise, as they do for the DNLS
Fig. 1 for a typical set of parameterk,(n). To calculate the [11]. In the discrete case, it is expected that out-of-phase
breather-breather interaction, we take the limjk— 0, with breather configurationrsanbe linearly stabléfor sufficiently
k/m=(1- w?)/w?, wherew is the breather frequency. Then discrete lattices as they have been found to be in the case of
Eq. (6) becomes DNLS in[11,14.
Another important question that naturally arises is how
(1 w22 (1 0?52 ';Ee piciyre Eresentel_d hte(:refz \INI:L be mo_ctjri:ieldtti_n approa_ching
—w —w e anticontinuum limit(of lattices with lattice spacing
E=| 16J1-*~8m® 2 +6m 4 —). In that case, the presence of the instability for in-
phase pulse oscillations will not be affected, as the Floquet
XE(1—m?). (7) multipliers corresponding to the so-called “interaction eigen-

w w
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(b) t (@) t

FIG. 4. The ac-driven and damped case: once again, space-time contour plots of the energy density are givés).dPalib)sare both
for F;=0.225. In the top left panel, the initial condition contains 7 breathers in the lattice, while in the second one it contains 14) Panel
of the stabilized locked breather lattice occursFgr=0.425, while the intermittent pattern of parid) occurs forF,=0.310(also see text

values” of [11], will always be present and will be unstable. where «, the dissipation coefficient was fixed to O(the
However, their specific value will depend on the lattice spactesults were also checked to be representative for different
ing. Hence, if the lattice spacing increases and so does thealues ofa) and F, was varied.o was chosen to be the
associated pulse separation, the instability will becomérequency of the breather lattice. The scenarios observed
weaker(i.e., the growth rate will decreasand the time nec-  ere, basically, similar to the ones reported[it8]. For
essary for it to manifest itself, which is inversely propor- smallF, (F,<0.198), the lattice smoothed out to a uniform
tional to the growth rate, will increase. In the case of discreteyatig) statdsimilar to the one observed in the top left panel
bre_athers oscnlqtlr)g out of phase, conflgur'atlons close to thg; Fig. 4, but for a slightly higher value d¥,=0.225) and
anticontinuum limit are expected to be Ilnea_rly stabl_e,_ 3%he response became identical to the periodic motion of the
mentioned above. Nevertheless, as the continuum limit '%ingle pendulunisee[18], and references thergirFor large

approached, more “exotic” routes to instability, such as the . . i
Hamiltonian Hopf bifurcationg§15] observed in the corre- .FO (F0>0'4.27)’ the response be_came h|ghly wregular lead
ing to chaotic dynamics. In the intermediate regime, how-

ing DNL fi i .g.[1 -
sponding S configurationsee, e.g.[16]), can be ex ever, suppression of chaotic behavior was observed by the

ected. . o . . )
b However, the question arises, whether stabilization of th&eneration and localization or intermittent behavior of pulse-

breather lattice can be achieved in driven and damped situdlk€ coherent structures. We do not attempt to give parameter
tions studied previously in the dc cak&7], and also for ac regimes for the individual types of intermediate behavior

driving and small domains ifil8]. The SG equation then Since, as the first twdeft-mosb panels of Fig. 4 indicate, the
becomes corresponding parameter windows were relatively sensitive

to initial conditions(i.e., these two panels show that the be-
Uit = Uy, — Sinu+ Fg sin(wt) — au,, (8) havior was different for the same parameter values but dif-

026613-4



INTERACTION BETWEEN SINE-GORDON . .. PHYSICAL REVIEW B4 026613

ferent number of breathers in the initial conditioinstead, Note that 47 is the energy of a single pseudosphere, while
we summarize the main features of this regime: the remaining terms vyield the interaction energy

(1) Regimes of locking to a breather lattijgsuch as =V(k,m). On the other hand, th&—finite, m—0 limit
0.421<F,<0.427; see panét) of Fig. 4]; it was also tested gives the kink-antikink pair solution 4 tan(t sectx). The
that such localization occurred independently of the numbegnergy in this case is given by
of breathers in the initial condition;

(2) Regimes of strongly intermittent behavipsee the E= +2m2(2+3k2+ 3)
panel(d) of Fig. 4] where the re-emergence of coherent ex- k2
citations suppressed the appearance of chaos; (10

(3) Regimes of coexistence between the above Situationance again, as expected from the physical intuition of the
(i.e., where a few breathers were strongly localized Continubroblemg thé interacrz)tion is attractive I?n){his limit
\?vlf"lé;vgg?a?;:?: v\f/\gﬁ[jeo\?vgcgfs {fnr}%lrymbsle?%\:ﬁﬂe;ﬂa(ﬁoﬁ In _conclusion, usingl the exact b.reather lattice .SO|l..Iti0n of
behavior. An important result, however, of these investigac-the. sine-Gordon equation W@ obtained an attractive inter-

. A, . ' Lo ; : action between two breathers as a function of breather sepa-
tions is thatit is possible to lock the configuration either

completely, or even partially (with respect to the initial con- ration and frequency in the asymptotic limiti) recovered
ompietely, or € P y P : the interaction energy between two pseudosphere solutions
dition), depending on the parameter values, into a breather,

) - . and a kink-antikink pair in the appropriate limit§ii) nu-
Iattllzc;ﬁas”tati\,/ ethirs\‘ljegsr;i der"t"e'ggw%gd d(ijf?er?gr;?g]limits of Eql) merically found the lattice solution to be unstable, diw
suggestza 2], For kgm—>1 the limit gives the “pseudb- numerically demonstrated stabilization of the lattice through
sphere” solutionu—4 tar (tanht/2), which resembles a ac driving with damping. Our results should also be relevant

. S .~ for NLS and other breather-bearing nonlinear equations. An
ITmthmlls( but in time rather than spagg]. The energy in this extension of our analysis and numerical results for the 2

+1 dimensional sine-Gordon equation would be highly de-
sirable.

1
16—-8 k+E E(1-m?).

E=dm— —(k—1)+ —12+3—7T —1)%(k—1)2
o 2( ) 4 (m=1) 32(m )X ) This research is supported by the U.S. Department of En-
(9 ergy, under Contract No. W-7405-ENG-36.
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